FINDING THE GREATEST COMMON DIVISOR (KNOWN AS GCD or GCF)

Problems: Find GCD of 108 and 30

Method: 1. Subtract smaller number from the larger number.

- 2. Use remainder and subtract smaller number.
- Continue until remainder is zero.
 Last number before zero is the GCF.

Solve: 1. 108 - 30 = 78 78 - 30 = 48 48 - 30 = 18 30 - 18 = 12 18 - 12 = 6 6 - 6 = 0

2. Last number before zero is 6, the GCD.

6 Answer

- 1. Find the GCD of 40 and 12
- 2. Find the GCD of 20 and 48
- 3. Find the GCD of 25 and 90
- 4. Find the GCD of 30 and 72
- 5. Find the GCD of 14 and 30

FINDING THE LEAST COMMON MULTIPLE (LCM)

Problems: Find the LCM of 36 and 54

- Method: 1. Mentally list the multiples of the larger number including the larger number itself.
 - 2. Stop listing the multiples of the larger number when a multiple listed is also a multiple of the smaller number. This multiple is common to both and is the LCM.
- Solve: 1. Multiples of 54: 54, 108....
 - 2. Stop at 108 because 108 is also a multiple of 36. So the LCM is:

108 Answer

- 1. LCM of 20 and 30
- LCM of 15 and 90
- 3. LCM of 18 and 30
- 4. LCM of 12 and 15
- 5. LCM of 16 and 40
- 6. LCM of 30 and 50
- 7. LCM of 12 and 40
- 8. LCM of 15 and 20

EXPONENTS

An exponent is the small number written to the upper right hand side of a number:

53

The '3' is called the exponent and the '5' is called the base. The exponent is often referred to as the 'power' of the number.

 5^3 means $5 \times 5 \times 5$

To work out the multiplication the result is 125. The exponent '3' is read: 3rd power or cubed. The example above could be read 'five cubed' or '5 to the third power'. The example:

 5^2 means 5 x 5 or is 25 To read this example it is five squared or five to the second power.

Problems: $6^3 = ?$

Method: 1. Notice exponent.

 Multiply number as a factor that many times.

Solve: 1. Exponent is 3.

2. $6 \times 6 \times 6 = 216$ Answer

- 1. 8² 2. 3³
- 3. 3² 4. 10³
- 5. 7² 6. 2⁵
- 7. 9² 8. 11¹

SQUARES; SQUARE ROOTS & CUBES; CUBE ROOTS

It will help your speed if these squares and cubes are known as well as you know the multiplication tables:

$$1^{2} = 1$$
 $9^{2} = 81$ $17^{2} = 289$ $1^{3} = 1$
 $2^{2} = 4$ $10^{2} = 100$ $18^{2} = 324$ $2^{3} = 8$
 $3^{2} = 9$ $11^{2} = 121$ $19^{2} = 361$ $3^{3} = 27$
 $4^{2} = 16$ $12^{2} = 144$ $20^{2} = 400$ $4^{3} = 64$
 $5^{2} = 25$ $13^{2} = 169$ $21^{2} = 441$ $5^{3} = 125$
 $6^{2} = 36$ $14^{2} = 196$ $22^{2} = 484$ $6^{3} = 216$
 $7^{2} = 49$ $15^{2} = 225$ $23^{2} = 529$ $7^{3} = 343$
 $8^{2} = 64$ $16^{2} = 256$ $24^{2} = 576$ $8^{3} = 512$
 $25^{2} = 625$ $9^{3} = 729$

Using the squares and cubes from above, the square roots or cube roots may be found indicated by a math symbol called the radical. $\sqrt{}$

Examples:
$$\sqrt{1} = 1$$
 $\sqrt{121} = 11$ $\sqrt{441} = 21$ $\sqrt{4} = 2$ $\sqrt{144} = 12$ $\sqrt{484} = 22$ $\sqrt{16} = 4$ $\sqrt{196} = 14$ $\sqrt{529} = 23$ $\sqrt{25} = 5$ $\sqrt{225} = 15$ $\sqrt{576} = 24$ $\sqrt[3]{27} = 3$ $\sqrt[3]{125} = 5$ $\sqrt[3]{2} = 6$

TRY THESE:

E:
1.
$$\sqrt{64} =$$
 2. $\sqrt{400} =$ 3. $\sqrt{225} =$
4. $\sqrt{361} =$ 5. $\sqrt{256} =$ 6. $\sqrt{289} =$
7. $\sqrt{196} =$ 8. $\sqrt{900} =$ 9. $\sqrt[3]{27} =$
10. $\sqrt[3]{8} =$ 11. $\sqrt[3]{125} =$ 12. $\sqrt[3]{64} =$

Page 62 E

COMPARING TWO FRACTIONS

Problem: Which is larger? $\frac{5}{6}$ or $\frac{7}{9}$

Method:

- 1. Multiply first numerator times the second denominator.
- 2. Multiply first denominator times second numerator.
- Compare results of #1, #2.

- Solve: 1. $5 \times 9 = 45$
 - 2. $6 \times 7 = 42$
 - 3. 45 > 42 so $\frac{5}{6} > \frac{7}{9}$

5 6 Answer

TRY THESE:

Use >, <, or =

- 1. 3/5 4/9
- 5. 3/11 9/33
- 2. ⁻2/3 ⁻3/5
- 6. ⁻4/5 ⁻1/3
- 3. 2/5 3/11
- 7. 3/13 2/11
- 4. 1/3 2/5
- 8. 5/17 3/17

COMPARING DECIMALS

Problem: Which is larger: .65 or .63?

Method: 1. Compare the value of the highest place.

- If the highest places are equal in value, progress to the next lower place to compare. Continue until a digit in the same place is either higher or lower.
- Solve: 1. Highest place is tenths: '6's are equal.
 - Proceed to compare at hundredths' places: 5 is greater than 3 so .65 is greater than .63.

.65 Answer

Note: Think of location of the number on the number line, too.

1	605	OI	.6057	6.	⁻ 3.2	or	⁻ 3.3
1	.003	01					